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Multivariate models

Learning Outcomes

In this chapter, you will learn how to

● Compare and contrast single equation and systems-based
approaches to building models

● Discuss the cause, consequence and solution to simultaneous
equations bias

● Derive the reduced form equations from a structural model

● Describe several methods for estimating simultaneous
equations models

● Explain the relative advantages and disadvantages of VAR
modelling

● Determine whether an equation from a system is identified

● Estimate optimal lag lengths, impulse responses and variance
decompositions

● Conduct Granger causality tests

● Construct simultaneous equations models and VARs in EViews

6.1 Motivations

All of the structural models that have been considered thus far have been

single equations models of the form

y = Xβ + u (6.1)

One of the assumptions of the classical linear regression model (CLRM)

is that the explanatory variables are non-stochastic, or fixed in repeated

samples. There are various ways of stating this condition, some of which

are slightly more or less strict, but all of which have the same broad
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266 Introductory Econometrics for Finance

implication. It could also be stated that all of the variables contained in

the X matrix are assumed to be exogenous -- that is, their values are deter-

mined outside that equation. This is a rather simplistic working definition

of exogeneity, although several alternatives are possible; this issue will be

revisited later in the chapter. Another way to state this is that the model

is ‘conditioned on’ the variables in X .

As stated in chapter 2, the X matrix is assumed not to have a probability

distribution. Note also that causality in this model runs from X to y, and

not vice versa, i.e. that changes in the values of the explanatory variables

cause changes in the values of y, but that changes in the value of y will

not impact upon the explanatory variables. On the other hand, y is an

endogenous variable -- that is, its value is determined by (6.1).

The purpose of the first part of this chapter is to investigate one of the

important circumstances under which the assumption presented above

will be violated. The impact on the OLS estimator of such a violation will

then be considered.

To illustrate a situation in which such a phenomenon may arise, con-

sider the following two equations that describe a possible model for the

total aggregate (country-wide) supply of new houses (or any other physical

asset).

Qdt = α + β Pt + γ St + ut (6.2)

Qst = λ + μPt + κTt + vt (6.3)

Qdt = Qst (6.4)

where

Qdt = quantity of new houses demanded at time t

Qst = quantity of new houses supplied (built) at time t

Pt = (average) price of new houses prevailing at time t

St = price of a substitute (e.g. older houses)

Tt = some variable embodying the state of housebuilding technology, ut

and vt are error terms.

Equation (6.2) is an equation for modelling the demand for new houses,

and (6.3) models the supply of new houses. (6.4) is an equilibrium condi-

tion for there to be no excess demand (people willing and able to buy new

houses but cannot) and no excess supply (constructed houses that remain

empty owing to lack of demand).

Assuming that the market always clears, that is, that the market is

always in equilibrium, and dropping the time subscripts for simplicity,
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(6.2)--(6.4) can be written

Q = α + β P + γ S + u (6.5)

Q = λ + μP + κT + v (6.6)

Equations (6.5) and (6.6) together comprise a simultaneous structural form

of the model, or a set of structural equations. These are the equations

incorporating the variables that economic or financial theory suggests

should be related to one another in a relationship of this form. The point

is that price and quantity are determined simultaneously (price affects

quantity and quantity affects price). Thus, in order to sell more houses,

everything else equal, the builder will have to lower the price. Equally, in

order to obtain a higher price for each house, the builder should construct

and expect to sell fewer houses. P and Q are endogenous variables, while

S and T are exogenous.

A set of reduced form equations corresponding to (6.5) and (6.6) can be

obtained by solving (6.5) and (6.6) for Pand for Q (separately). There will

be a reduced form equation for each endogenous variable in the system.

Solving for Q

α + β P + γ S + u = λ + μP + κT + v (6.7)

Solving for P

Q

β
−

α

β
−

γ S

β
−

u

β
=

Q

μ
−

λ

μ
−

κT

μ
−

v

μ
(6.8)

Rearranging (6.7)

β P − μP = λ − α + κT − γ S + v − u (6.9)

(β − μ)P = (λ − α) + κT − γ S + (v − u) (6.10)

P =
λ − α

β − μ
+

κ

β − μ
T −

γ

β − μ
S +

v − u

β − μ
(6.11)

Multiplying (6.8) through by βμ and rearranging

μQ − μα − μγ S − μu = βQ − βλ − βκT − βv (6.12)

μQ − βQ = μα − βλ − βκT + μγ S + μu − βv (6.13)

(μ − β)Q = (μα − βλ) − βκT + μγ S + (μu − βv) (6.14)

Q =
μα − βλ

μ − β
−

βκ

μ − β
T +

μγ

μ − β
S +

μu − βv

μ − β
(6.15)

(6.11) and (6.15) are the reduced form equations for P and Q. They are the

equations that result from solving the simultaneous structural equations
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given by (6.5) and (6.6). Notice that these reduced form equations have

only exogenous variables on the RHS.

6.2 Simultaneous equations bias

It would not be possible to estimate (6.5) and (6.6) validly using OLS, as they

are clearly related to one another since they both contain P and Q, and

OLS would require them to be estimated separately. But what would have

happened if a researcher had estimated them separately using OLS? Both

equations depend on P . One of the CLRM assumptions was that X and u

are independent (where X is a matrix containing all the variables on the

RHS of the equation), and given also the assumption that E(u) = 0, then

E(X ′u) = 0, i.e. the errors are uncorrelated with the explanatory variables.

But it is clear from (6.11) that P is related to the errors in (6.5) and (6.6) --

i.e. it is stochastic. So this assumption has been violated.

What would be the consequences for the OLS estimator, β̂ if the simul-

taneity were ignored? Recall that

β̂ = (X ′ X )−1 X ′y (6.16)

and that

y = Xβ + u (6.17)

Replacing y in (6.16) with the RHS of (6.17)

β̂ = (X ′ X )−1 X ′(Xβ + u) (6.18)

so that

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (6.19)

β̂ = β + (X ′ X )−1 X ′u (6.20)

Taking expectations,

E(β̂) = E(β) + E((X ′ X )−1 X ′u) (6.21)

E(β̂) = β + E((X ′ X )−1 X ′u) (6.22)

If the Xs are non-stochastic (i.e. if the assumption had not been violated),

E[(X ′ X )−1 X ′u] = (X ′ X )−1 X ′E[u] = 0, which would be the case in a single

equation system, so that E(β̂) = β in (6.22). The implication is that the

OLS estimator, β̂, would be unbiased.

But, if the equation is part of a system, then E[(X ′ X )−1 X ′u] �= 0, in

general, so that the last term in (6.22) will not drop out, and so it can be
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concluded that application of OLS to structural equations which are part

of a simultaneous system will lead to biased coefficient estimates. This is

known as simultaneity bias or simultaneous equations bias.

Is the OLS estimator still consistent, even though it is biased? No, in

fact, the estimator is inconsistent as well, so that the coefficient estimates

would still be biased even if an infinite amount of data were available,

although proving this would require a level of algebra beyond the scope

of this book.

6.3 So how can simultaneous equations models
be validly estimated?

Taking (6.11) and (6.15), i.e. the reduced form equations, they can be rewrit-

ten as

P = π10 + π11T + π12S + ε1 (6.23)

Q = π20 + π21T + π22S + ε2 (6.24)

where the π coefficients in the reduced form are simply combinations of

the original coefficients, so that

π10 =
λ − α

β − μ
, π11 =

κ

β − μ
, π12 =

−γ

β − μ
, ε1 =

v − u

β − μ
,

π20 =
μα − βλ

μ − β
, π21 =

−βκ

μ − β
, π22 =

μγ

μ − β
, ε2 =

μu − βv

μ − β

Equations (6.23) and (6.24) can be estimated using OLS since all the RHS

variables are exogenous, so the usual requirements for consistency and

unbiasedness of the OLS estimator will hold (provided that there are no

other misspecifications). Estimates of the πi j coefficients would thus be

obtained. But, the values of the π coefficients are probably not of much

interest; what was wanted were the original parameters in the structural

equations -- α, β, γ, λ, μ, κ. The latter are the parameters whose val-

ues determine how the variables are related to one another according to

financial or economic theory.

6.4 Can the original coefficients be retrieved from the πs?

The short answer to this question is ‘sometimes’, depending upon whether

the equations are identified. Identification is the issue of whether there is

enough information in the reduced form equations to enable the struc-

tural form coefficients to be calculated. Consider the following demand
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and supply equations

Q = α + β P Supply equation (6.25)

Q = λ + μP Demand equation (6.26)

It is impossible to tell which equation is which, so that if one simply ob-

served some quantities of a good sold and the price at which they were

sold, it would not be possible to obtain the estimates of α, β, λ and μ. This

arises since there is insufficient information from the equations to esti-

mate 4 parameters. Only 2 parameters could be estimated here, although

each would be some combination of demand and supply parameters, and

so neither would be of any use. In this case, it would be stated that both

equations are unidentified (or not identified or underidentified). Notice that

this problem would not have arisen with (6.5) and (6.6) since they have

different exogenous variables.

6.4.1 What determines whether an equation is identified or not?

Any one of three possible situations could arise, as shown in box 6.1.

How can it be determined whether an equation is identified or not?

Broadly, the answer to this question depends upon how many and which

variables are present in each structural equation. There are two conditions

that could be examined to determine whether a given equation from a

system is identified -- the order condition and the rank condition:

● The order condition -- is a necessary but not sufficient condition for an

equation to be identified. That is, even if the order condition is satisfied,

the equation might not be identified.

● The rank condition -- is a necessary and sufficient condition for identi-

fication. The structural equations are specified in a matrix form and

the rank of a coefficient matrix of all of the variables excluded from a

Box 6.1 Determining whether an equation is identified

(1) An equation is unidentified, such as (6.25) or (6.26). In the case of an unidentified

equation, structural coefficients cannot be obtained from the reduced form estimates

by any means.

(2) An equation is exactly identified (just identified), such as (6.5) or (6.6). In the case

of a just identified equation, unique structural form coefficient estimates can be

obtained by substitution from the reduced form equations.

(3) If an equation is overidentified, more than one set of structural coefficients can be

obtained from the reduced form. An example of this will be presented later in this

chapter.
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particular equation is examined. An examination of the rank condition

requires some technical algebra beyond the scope of this text.

Even though the order condition is not sufficient to ensure identification

of an equation from a system, the rank condition will not be considered

further here. For relatively simple systems of equations, the two rules

would lead to the same conclusions. Also, in fact, most systems of equa-

tions in economics and finance are overidentified, so that underidentifi-

cation is not a big issue in practice.

6.4.2 Statement of the order condition

There are a number of different ways of stating the order condition; that

employed here is an intuitive one (taken from Ramanathan, 1995, p. 666,

and slightly modified):

Let G denote the number of structural equations. An equation is just

identified if the number of variables excluded from an equation is G− 1,

where ‘excluded’ means the number of all endogenous and exogenous

variables that are not present in this particular equation. If more than

G− 1 are absent, it is over-identified. If less than G− 1 are absent, it is

not identified.

One obvious implication of this rule is that equations in a system can have

differing degrees of identification, as illustrated by the following example.

Example 6.1

In the following system of equations, the Y s are endogenous, while the

Xs are exogenous (with time subscripts suppressed). Determine whether

each equation is overidentified, underidentified, or just identified.

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + u1 (6.27)

Y2 = β0 + β1Y3 + β2 X1 + u2 (6.28)

Y3 = γ0 + γ1Y2 + u3 (6.29)

In this case, there are G = 3 equations and 3 endogenous variables. Thus,

if the number of excluded variables is exactly 2, the equation is just iden-

tified. If the number of excluded variables is more than 2, the equation

is overidentified. If the number of excluded variables is less than 2, the

equation is not identified.

The variables that appear in one or more of the three equations are Y1,

Y2, Y3, X1, X2. Applying the order condition to (6.27)--(6.29):
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● Equation (6.27): contains all variables, with none excluded, so that it is

not identified

● Equation (6.28): has variables Y1 and X2 excluded, and so is just identi-

fied

● Equation (6.29): has variables Y1, X1, X2 excluded, and so is overidenti-

fied

6.5 Simultaneous equations in finance

There are of course numerous situations in finance where a simultaneous

equations framework is more relevant than a single equation model. Two

illustrations from the market microstructure literature are presented later

in this chapter, while another, drawn from the banking literature, will be

discussed now.

There has recently been much debate internationally, but especially in

the UK, concerning the effectiveness of competitive forces in the banking

industry. Governments and regulators express concern at the increasing

concentration in the industry, as evidenced by successive waves of merger

activity, and at the enormous profits that many banks made in the late

1990s and early twenty-first century. They argue that such profits result

from a lack of effective competition. However, many (most notably, of

course, the banks themselves!) suggest that such profits are not the result

of excessive concentration or anti-competitive practices, but rather partly

arise owing to recent world prosperity at that phase of the business cycle

(the ‘profits won’t last’ argument) and partly owing to massive cost-cutting

by the banks, given recent technological improvements. These debates

have fuelled a resurgent interest in models of banking profitability and

banking competition. One such model is employed by Shaffer and DiSalvo

(1994) in the context of two banks operating in south central Pennsylvania.

The model is given by

ln qi t = a0 + a1 ln Pi t + a2 ln Pj t + a3 ln Yt + a4 ln Z t + a5t + ui1t (6.30)

ln T Ri t = b0 + b1 ln qi t +

3
∑

k = 1

bk+1 ln wikt + ui2t (6.31)

where i = 1, 2 are the two banks, q is bank output, Pt is the price of the

output at time t , Yt is a measure of aggregate income at time t , Z t is

the price of a substitute for bank activity at time t , the variable t rep-

resents a time trend, TRi t is the total revenue of bank i at time t , wikt
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are the prices of input k (k = 1, 2, 3 for labour, bank deposits, and phys-

ical capital) for bank i at time t and the u are unobservable error terms.

The coefficient estimates are not presented here, but suffice to say that a

simultaneous framework, with the resulting model estimated separately

using annual time series data for each bank, is necessary. Output is a

function of price on the RHS of (6.30), while in (6.31), total revenue,

which is a function of output on the RHS, is obviously related to price.

Therefore, OLS is again an inappropriate estimation technique. Both of

the equations in this system are overidentified, since there are only two

equations, and the income, the substitute for banking activity, and the

trend terms are missing from (6.31), whereas the three input prices are

missing from (6.30).

6.6 A definition of exogeneity

Leamer (1985) defines a variable x as exogenous if the conditional dis-

tribution of y given x does not change with modifications of the process

generating x . Although several slightly different definitions exist, it is pos-

sible to classify two forms of exogeneity -- predeterminedness and strict

exogeneity:

● A predetermined variable is one that is independent of the contempora-

neous and future errors in that equation

● A strictly exogenous variable is one that is independent of all contempo-

raneous, future and past errors in that equation.

6.6.1 Tests for exogeneity

How can a researcher tell whether variables really need to be treated as

endogenous or not? In other words, financial theory might suggest that

there should be a two-way relationship between two or more variables, but

how can it be tested whether a simultaneous equations model is necessary

in practice?

Example 6.2

Consider again (6.27)--(6.29). Equation (6.27) contains Y2 and Y3 -- but are

separate equations required for them, or could the variables Y2 and Y3 be

treated as exogenous variables (in which case, they would be called X3

and X4!)? This can be formally investigated using a Hausman test, which

is calculated as shown in box 6.2.
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Box 6.2 Conducting a Hausman test for exogeneity

(1) Obtain the reduced form equations corresponding to (6.27)–(6.29).

The reduced form equations are obtained as follows.

Substituting in (6.28) for Y3 from (6.29):

Y2 = β0 + β1(γ0 + γ1Y2 + u3) + β2 X1 + u2 (6.32)

Y2 = β0 + β1γ0 + β1γ1Y2 + β1u3 + β2 X1 + u2 (6.33)

Y2(1 − β1γ1) = (β0 + β1γ0) + β2 X1 + (u2 + β1u3) (6.34)

Y2 =
(β0 + β1γ0)

(1 − β1γ1)
+

β2 X1

(1 − β1γ1)
+

(u2 + β1u3)

(1 − β1γ1)
(6.35)

(6.35) is the reduced form equation for Y2, since there are no endogenous variables

on the RHS. Substituting in (6.27) for Y3 from (6.29)

Y1 = α0 + α1Y2 + α3(γ0 + γ1Y2 + u3) + α4 X1 + α5 X2 + u1 (6.36)

Y1 = α0 + α1Y2 + α3γ0 + α3γ1Y2 + α3u3 + α4 X1 + α5 X2 + u1 (6.37)

Y1 = (α0 + α3γ0) + (α1 + α3γ1)Y2 + α4 X1 + α5 X2 + (u1 + α3u3) (6.38)

Substituting in (6.38) for Y2 from (6.35):

Y1 = (α0 + α3γ0) + (α1 + α3γ1)

(

(β0 + β1γ0)

(1 − β1γ1)
+

β2 X1

(1 − β1γ1)
+

(u2 + β1u3)

(1 − β1γ1)

)

+ α4 X1 + α5 X2 + (u1 + α3u3) (6.39)

Y1 =

(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)

(1 − β1γ1)

)

+
(α1 + α3γ1)β2 X1

(1 − β1γ1)

+
(α1 + α3γ1)(u2 + β1u3)

(1 − β1γ1)
+ α4 X1 + α5 X2 + (u1 + α3u3) (6.40)

Y1 =

(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)

(1 − β1γ1)

)

+

(

(α1 + α3γ1)β2

(1 − β1γ1)
+ α4

)

X1

+ α5 X2 +

(

(α1 + α3γ1)(u2 + β1u3)

(1 − β1γ1)
+ (u1 + α3u3)

)

(6.41)

(6.41) is the reduced form equation for Y1. Finally, to obtain the reduced form

equation for Y3, substitute in (6.29) for Y2 from (6.35)

Y3=

(

γ0 +
γ1(β0 + β1γ0)

(1 − β1γ1)

)

+
γ1β2 X1

(1 − β1γ1)
+

(

γ1(u2 + β1u3)

(1 − β1γ1)
+ u3

)

(6.42)

So, the reduced form equations corresponding to (6.27)–(6.29) are, respectively,

given by (6.41), (6.35) and (6.42). These three equations can also be expressed

using πi j for the coefficients, as discussed above

Y1 = π10 + π11 X1 + π12 X2 + v1 (6.43)

Y2 = π20 + π21 X1 + v2 (6.44)

Y3 = π30 + π31 X1 + v3 (6.45)
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Estimate the reduced form equations (6.43)–(6.45) using OLS, and obtain the fitted

values, Ŷ 1
1 , Ŷ 1

2 , Ŷ 1
3 , where the superfluous superscript 1 denotes the fitted values

from the reduced form estimation.

(2) Run the regression corresponding to (6.27) – i.e. the structural form equation, at

this stage ignoring any possible simultaneity.

(3) Run the regression (6.27) again, but now also including the fitted values from the

reduced form equations, Ŷ 1
2 , Ŷ 1

3 , as additional regressors

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + λ2Ŷ 1
2 + λ3Ŷ 1

3 + ε1 (6.46)

(4) Use an F-test to test the joint restriction that λ2 = 0, and λ3 = 0. If the null

hypothesis is rejected, Y2 and Y3 should be treated as endogenous. If λ2 and λ3

are significantly different from zero, there is extra important information for modelling

Y1 from the reduced form equations. On the other hand, if the null is not rejected,

Y2 and Y3 can be treated as exogenous for Y1, and there is no useful additional

information available for Y1 from modelling Y2 and Y3 as endogenous variables.

Steps 2–4 would then be repeated for (6.28) and (6.29).

6.7 Triangular systems

Consider the following system of equations, with time subscripts omitted

for simplicity

Y1 = β10 + γ11 X1 + γ12 X2 + u1 (6.47)

Y2 = β20 + β21Y1 + γ21 X1 + γ22 X2 + u2 (6.48)

Y3 = β30 + β31Y1 + β32Y2 + γ31 X1 + γ32 X2 + u3 (6.49)

Assume that the error terms from each of the three equations are not

correlated with each other. Can the equations be estimated individually

using OLS? At first blush, an appropriate answer to this question might

appear to be, ‘No, because this is a simultaneous equations system.’ But

consider the following:

● Equation (6.47): contains no endogenous variables, so X1 and X2 are not

correlated with u1. So OLS can be used on (6.47).

● Equation (6.48): contains endogenous Y1 together with exogenous X1

and X2. OLS can be used on (6.48) if all the RHS variables in (6.48) are

uncorrelated with that equation’s error term. In fact, Y1 is not corre-

lated with u2 because there is no Y2 term in (6.47). So OLS can be used

on (6.48).

● Equation (6.49): contains both Y1 and Y2; these are required to be un-

correlated with u3. By similar arguments to the above, (6.47) and (6.48)

do not contain Y3. So OLS can be used on (6.49).
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This is known as a recursive or triangular system, which is really a spe-

cial case -- a set of equations that looks like a simultaneous equations

system, but isn’t. In fact, there is not a simultaneity problem here, since

the dependence is not bi-directional, for each equation it all goes one

way.

6.8 Estimation procedures for simultaneous equations systems

Each equation that is part of a recursive system can be estimated

separately using OLS. But in practice, not many systems of equations will

be recursive, so a direct way to address the estimation of equations that

are from a true simultaneous system must be sought. In fact, there are

potentially many methods that can be used, three of which -- indirect

least squares, two-stage least squares and instrumental variables -- will be

detailed here. Each of these will be discussed below.

6.8.1 Indirect least squares (ILS)

Although it is not possible to use OLS directly on the structural equations,

it is possible to validly apply OLS to the reduced form equations. If the sys-

tem is just identified, ILS involves estimating the reduced form equations

using OLS, and then using them to substitute back to obtain the struc-

tural parameters. ILS is intuitive to understand in principle; however, it is

not widely applied because:

(1) Solving back to get the structural parameters can be tedious. For a large

system, the equations may be set up in a matrix form, and to solve

them may therefore require the inversion of a large matrix.

(2) Most simultaneous equations systems are overidentified, and ILS can be used

to obtain coefficients only for just identified equations. For overiden-

tified systems, ILS would not yield unique structural form estimates.

ILS estimators are consistent and asymptotically efficient, but in general

they are biased, so that in finite samples ILS will deliver biased struc-

tural form estimates. In a nutshell, the bias arises from the fact that the

structural form coefficients under ILS estimation are transformations of

the reduced form coefficients. When expectations are taken to test for

unbiasedness, it is in general not the case that the expected value of a

(non-linear) combination of reduced form coefficients will be equal to the

combination of their expected values (see Gujarati, 1995, pp. 704--5 for a

proof).
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6.8.2 Estimation of just identified and overidentified systems using 2SLS

This technique is applicable for the estimation of overidentified systems,

where ILS cannot be used. In fact, it can also be employed for estimating

the coefficients of just identified systems, in which case the method would

yield asymptotically equivalent estimates to those obtained from ILS.

Two-stage least squares (2SLS or TSLS) is done in two stages:

● Stage 1 Obtain and estimate the reduced form equations using OLS.

Save the fitted values for the dependent variables.

● Stage 2 Estimate the structural equations using OLS, but replace any

RHS endogenous variables with their stage 1 fitted values.

Example 6.3

Suppose that (6.27)--(6.29) are required. 2SLS would involve the following

two steps:

● Stage 1 Estimate the reduced form equations (6.43)--(6.45) individually

by OLS and obtain the fitted values, and denote them Ŷ 1
1 , Ŷ 1

2 , Ŷ 1
3 , where

the superfluous superscript 1 indicates that these are the fitted values

from the first stage.

● Stage 2 Replace the RHS endogenous variables with their stage 1 esti-

mated values

Y1 = α0 + α1Ŷ 1
2 + α3Ŷ 1

3 + α4 X1 + α5 X2 + u1 (6.50)

Y2 = β0 + β1Ŷ 1
3 + β2 X1 + u2 (6.51)

Y3 = γ0 + γ1Ŷ 1
2 + u3 (6.52)

where Ŷ 1
2 and Ŷ 1

3 are the fitted values from the reduced form estimation.

Now Ŷ 1
2 and Ŷ 1

3 will not be correlated with u1, Ŷ 1
3 will not be correlated

with u2, and Ŷ 1
2 will not be correlated with u3. The simultaneity problem

has therefore been removed. It is worth noting that the 2SLS estimator

is consistent, but not unbiased.

In a simultaneous equations framework, it is still of concern whether the

usual assumptions of the CLRM are valid or not, although some of the

test statistics require modifications to be applicable in the systems con-

text. Most econometrics packages will automatically make any required

changes. To illustrate one potential consequence of the violation of the

CLRM assumptions, if the disturbances in the structural equations are

autocorrelated, the 2SLS estimator is not even consistent.
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The standard error estimates also need to be modified compared with

their OLS counterparts (again, econometrics software will usually do this

automatically), but once this has been done, the usual t -tests can be used

to test hypotheses about the structural form coefficients. This modification

arises as a result of the use of the reduced form fitted values on the RHS

rather than actual variables, which implies that a modification to the

error variance is required.

6.8.3 Instrumental variables

Broadly, the method of instrumental variables (IV) is another technique

for parameter estimation that can be validly used in the context of a

simultaneous equations system. Recall that the reason that OLS cannot be

used directly on the structural equations is that the endogenous variables

are correlated with the errors.

One solution to this would be not to use Y2 or Y3, but rather to use some

other variables instead. These other variables should be (highly) correlated

with Y2 and Y3, but not correlated with the errors -- such variables would

be known as instruments. Suppose that suitable instruments for Y2 and Y3,

were found and denoted z2 and z3, respectively. The instruments are not

used in the structural equations directly, but rather, regressions of the

following form are run

Y2 = λ1 + λ2z2 + ε1 (6.53)

Y3 = λ3 + λ4z3 + ε2 (6.54)

Obtain the fitted values from (6.53) and (6.54), Ŷ 1
2 and Ŷ 1

3 , and replace Y2

and Y3 with these in the structural equation. It is typical to use more

than one instrument per endogenous variable. If the instruments are the

variables in the reduced form equations, then IV is equivalent to 2SLS, so

that the latter can be viewed as a special case of the former.

6.8.4 What happens if IV or 2SLS are used unnecessarily?

In other words, suppose that one attempted to estimate a simultaneous

system when the variables specified as endogenous were in fact indepen-

dent of one another. The consequences are similar to those of including

irrelevant variables in a single equation OLS model. That is, the coefficient

estimates will still be consistent, but will be inefficient compared to those

that just used OLS directly.
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6.8.5 Other estimation techniques

There are, of course, many other estimation techniques available for

systems of equations, including three-stage least squares (3SLS), full

information maximum likelihood (FIML) and limited information maxi-

mum likelihood (LIML). Three-stage least squares provides a third step in

the estimation process that allows for non-zero covariances between the

error terms in the structural equations. It is asymptotically more efficient

than 2SLS since the latter ignores any information that may be available

concerning the error covariances (and also any additional information

that may be contained in the endogenous variables of other equations).

Full information maximum likelihood involves estimating all of the equa-

tions in the system simultaneously using maximum likelihood (see chap-

ter 8 for a discussion of the principles of maximum likelihood estimation).

Thus under FIML, all of the parameters in all equations are treated jointly,

and an appropriate likelihood function is formed and maximised. Finally,

limited information maximum likelihood involves estimating each equa-

tion separately by maximum likelihood. LIML and 2SLS are asymptotically

equivalent. For further technical details on each of these procedures, see

Greene (2002, chapter 15).

The following section presents an application of the simultaneous equa-

tions approach in finance to the joint modelling of bid--ask spreads and

trading activity in the S&P100 index options market. Two related applica-

tions of this technique that are also worth examining are by Wang et al.

(1997) and by Wang and Yau (2000). The former employs a bivariate sys-

tem to model trading volume and bid--ask spreads and they show using a

Hausman test that the two are indeed simultaneously related and so must

both be treated as endogenous variables and are modelled using 2SLS. The

latter paper employs a trivariate system to model trading volume, spreads

and intra-day volatility.

6.9 An application of a simultaneous equations approach
to modelling bid–ask spreads and trading activity

6.9.1 Introduction

One of the most rapidly growing areas of empirical research in finance is

the study of market microstructure. This research is involved with issues

such as price formation in financial markets, how the structure of the

market may affect the way it operates, determinants of the bid--ask spread,

and so on. One application of simultaneous equations methods in the
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market microstructure literature is a study by George and Longstaff (1993).

Among other issues, this paper considers the questions:

● Is trading activity related to the size of the bid--ask spread?

● How do spreads vary across options, and how is this related to the

volume of contracts traded? ‘Across options’ in this case means for dif-

ferent maturities and strike prices for an option on a given underlying

asset.

This chapter will now examine the George and Longstaff models, results

and conclusions.

6.9.2 The data

The data employed by George and Longstaff comprise options prices on

the S&P100 index, observed on all trading days during 1989. The S&P100

index has been traded on the Chicago Board Options Exchange (CBOE)

since 1983 on a continuous open-outcry auction basis. The option price

as used in the paper is defined as the average of the bid and the ask. The

average bid and ask prices are calculated for each option during the time

2.00p.m.--2.15p.m. (US Central Standard Time) to avoid time-of-day effects,

such as differences in behaviour at the open and the close of the market.

The following are then dropped from the sample for that day to avoid any

effects resulting from stale prices:

● Any options that do not have bid and ask quotes reported during the

1/4 hour

● Any options with fewer than ten trades during the day.

This procedure results in a total of 2,456 observations. A ‘pooled’ regres-

sion is conducted since the data have both time series and cross-sectional

dimensions. That is, the data are measured every trading day and across

options with different strikes and maturities, and the data is stacked in a

single column for analysis.

6.9.3 How might the option price/trading volume and the

bid–ask spread be related?

George and Longstaff argue that the bid--ask spread will be determined

by the interaction of market forces. Since there are many market makers

trading the S&P100 contract on the CBOE, the bid--ask spread will be set

to just cover marginal costs. There are three components of the costs

associated with being a market maker. These are administrative costs,
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inventory holding costs, and ‘risk costs’. George and Longstaff consider

three possibilities for how the bid--ask spread might be determined:

● Market makers equalise spreads across options This is likely to be the case

if order-processing (administrative) costs make up the majority of costs

associated with being a market maker. This could be the case since the

CBOE charges market makers the same fee for each option traded. In

fact, for every contract (100 options) traded, a CBOE fee of 9 cents and

an Options Clearing Corporation (OCC) fee of 10 cents is levied on the

firm that clears the trade.

● The spread might be a constant proportion of the option value This would

be the case if the majority of the market maker’s cost is in inventory

holding costs, since the more expensive options will cost more to hold

and hence the spread would be set wider.

● Market makers might equalise marginal costs across options irrespective of trad-

ing volume This would occur if the riskiness of an unwanted position

were the most important cost facing market makers. Market makers typ-

ically do not hold a particular view on the direction of the market -- they

simply try to make money by buying and selling. Hence, they would like

to be able to offload any unwanted (long or short) positions quickly. But

trading is not continuous, and in fact the average time between trades

in 1989 was approximately five minutes. The longer market makers hold

an option, the higher the risk they face since the higher the probabil-

ity that there will be a large adverse price movement. Thus options

with low trading volumes would command higher spreads since it is

more likely that the market maker would be holding these options for

longer.

In a non-quantitative exploratory analysis, George and Longstaff find that,

comparing across contracts with different maturities, the bid--ask spread

does indeed increase with maturity (as the option with longer maturity

is worth more) and with ‘moneyness’ (that is, an option that is deeper in

the money has a higher spread than one which is less in the money). This

is seen to be true for both call and put options.

6.9.4 The influence of tick-size rules on spreads

The CBOE limits the tick size (the minimum granularity of price quotes),

which will of course place a lower limit on the size of the spread. The tick

sizes are:

● $1/8 for options worth $3 or more

● $1/16 for options worth less than $3.
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6.9.5 The models and results

The intuition that the bid--ask spread and trading volume may be simul-

taneously related arises since a wider spread implies that trading is rel-

atively more expensive so that marginal investors would withdraw from

the market. On the other hand, market makers face additional risk if the

level of trading activity falls, and hence they may be expected to respond

by increasing their fee (the spread). The models developed seek to simul-

taneously determine the size of the bid--ask spread and the time between

trades.

For the calls, the model is:

CBAi = α0 + α1CDUMi + α2Ci + α3CLi + α4Ti + α5CRi + ei (6.55)

CLi = γ0 + γ1CBAi + γ2Ti + γ3T 2
i + γ4 M2

i + vi (6.56)

And symmetrically for the puts:

PBAi = β0 + β1PDUMi + β2 Pi + β3PLi + β4Ti + β5PRi + ui (6.57)

PLi = δ0 + δ1PBAi + δ2Ti + δ3T 2
i + δ4 M2

i + wi (6.58)

where CBAi and PBAi are the call bid--ask spread and the put bid--ask

spread for option i , respectively

Ci and Pi are the call price and put price for option i , respectively

CLi and PLi are the times between trades for the call and put option i ,

respectively

CRi and PRi are the squared deltas of the options

CDUMi and PDUMi are dummy variables to allow for the minimum

tick size

= 0 if Ci or Pi < $3

= 1 if Ci or Pi ≥ $3

T is the time to maturity

T 2 allows for a non-linear relationship between time to maturity and the

spread M2 is the square of moneyness, which is employed in quadratic

form since at-the-money options have a higher trading volume, while

out-of-the-money and in-the-money options both have lower trading

activity

CRi and PRi are measures of risk for the call and put, respectively, given

by the square of their deltas.

Equations (6.55) and (6.56), and then separately (6.57) and (6.58), are esti-

mated using 2SLS. The results are given here in tables 6.1 and 6.2.
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Table 6.1 Call bid–ask spread and trading volume regression

CBAi = α0 + α1CDUMi + α2Ci + α3CLi + α4Ti + α5CRi + ei (6.55)

CLi = γ0 + γ1CBAi + γ2Ti + γ3T2
i + γ4M2

i + vi (6.56)

α0 α1 α2 α3 α4 α5 Adj. R2

0.08362 0.06114 0.01679 0.00902 −0.00228 −0.15378 0.688
(16.80) (8.63) (15.49) (14.01) (−12.31) (−12.52)

γ0 γ1 γ2 γ3 γ4 Adj. R2

−3.8542 46.592 −0.12412 0.00406 0.00866 0.618
(−10.50) (30.49) (−6.01) (14.43) (4.76)

Note: t -ratios in parentheses.

Source: George and Longstaff (1993). Reprinted with the permission of School of

Business Administration, University of Washington.

Table 6.2 Put bid–ask spread and trading volume regression

PBAi = β0 + β1PDUMi + β2 Pi + β3PLi + β4Ti + β5PRi + ui (6.57)

PLi = δ0 + δ1PBAi + δ2Ti + δ3T2
i + δ4M2

i + wi (6.58)

β0 β1 β2 β3 β4 β5 Adj.R2

0.05707 0.03258 0.01726 0.00839 −0.00120 −0.08662 0.675
(15.19) (5.35) (15.90) (12.56) (−7.13) (−7.15)

δ0 δ1 δ2 δ3 δ4 Adj. R2

−2.8932 46.460 −0.15151 0.00339 0.01347 0.517
(−8.42) (34.06) (−7.74) (12.90) (10.86)

Note: t -ratios in parentheses.

Source: George and Longstaff (1993). Reprinted with the permission of School of

Business Administration, University of Washington.

The adjusted R2 ≈ 0.6 for all four equations, indicating that the vari-

ables selected do a good job of explaining the spread and the time between

trades. George and Longstaff argue that strategic market maker behaviour,

which cannot be easily modelled, is important in influencing the spread

and that this precludes a higher adjusted R2.

A next step in examining the empirical plausibility of the estimates is

to consider the sizes, signs and significances of the coefficients. In the call

and put spread regressions, respectively, α1 and β1 measure the tick size

constraint on the spread -- both are statistically significant and positive. α2

and β2 measure the effect of the option price on the spread. As expected,

both of these coefficients are again significant and positive since these are
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inventory or holding costs. The coefficient value of approximately 0.017

implies that a 1 dollar increase in the price of the option will on av-

erage lead to a 1.7 cent increase in the spread. α3 and β3 measure the

effect of trading activity on the spread. Recalling that an inverse trading

activity variable is used in the regressions, again, the coefficients have

their correct sign. That is, as the time between trades increases (that is, as

trading activity falls), the bid--ask spread widens. Furthermore, although

the coefficient values are small, they are statistically significant. In the

put spread regression, for example, the coefficient of approximately 0.009

implies that, even if the time between trades widened from one minute

to one hour, the spread would increase by only 54 cents. α4 and β4 mea-

sure the effect of time to maturity on the spread; both are negative and

statistically significant. The authors argue that this may arise as market

making is a more risky activity for near-maturity options. A possible al-

ternative explanation, which they dismiss after further investigation, is

that the early exercise possibility becomes more likely for very short-dated

options since the loss of time value would be negligible. Finally, α5 and

β5 measure the effect of risk on the spread; in both the call and put

spread regressions, these coefficients are negative and highly statistically

significant. This seems an odd result, which the authors struggle to jus-

tify, for it seems to suggest that more risky options will command lower

spreads.

Turning attention now to the trading activity regressions, γ1 and δ1

measure the effect of the spread size on call and put trading activity,

respectively. Both are positive and statistically significant, indicating that

a rise in the spread will increase the time between trades. The coefficients

are such that a 1 cent increase in the spread would lead to an increase

in the average time between call and put trades of nearly half a minute.

γ2 and δ2 give the effect of an increase in time to maturity, while γ3

and δ3 are coefficients attached to the square of time to maturity. For

both the call and put regressions, the coefficient on the level of time to

maturity is negative and significant, while that on the square is positive

and significant. As time to maturity increases, the squared term would

dominate, and one could therefore conclude that the time between trades

will show a U-shaped relationship with time to maturity. Finally, γ4 and δ4

give the effect of an increase in the square of moneyness (i.e. the effect of

an option going deeper into the money or deeper out of the money) on the

time between trades. For both the call and put regressions, the coefficients

are statistically significant and positive, showing that as the option moves

further from the money in either direction, the time between trades rises.

This is consistent with the authors’ supposition that trade is most active
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in at-the-money options, and less active in both out-of-the-money and in-

the-money options.

6.9.6 Conclusions

The value of the bid--ask spread on S&P100 index options and the time

between trades (a measure of market liquidity) can be usefully modelled

in a simultaneous system with exogenous variables such as the options’

deltas, time to maturity, moneyness, etc.

This study represents a nice example of the use of a simultaneous equa-

tions system, but, in this author’s view, it can be criticised on several

grounds. First, there are no diagnostic tests performed. Second, clearly

the equations are all overidentified, but it is not obvious how the over-

identifying restrictions have been generated. Did they arise from consid-

eration of financial theory? For example, why do the CL and PL equations

not contain the CR and PR variables? Why do the CBA and PBA equations

not contain moneyness or squared maturity variables? The authors could

also have tested for endogeneity of CBA and CL. Finally, the wrong sign on

the highly statistically significant squared deltas is puzzling.

6.10 Simultaneous equations modelling using EViews

What is the relationship between inflation and stock returns? Holding

stocks is often thought to provide a good hedge against inflation, since

the payments to equity holders are not fixed in nominal terms and rep-

resent a claim on real assets (unlike the coupons on bonds, for example).

However, the majority of empirical studies that have investigated the sign

of this relationship have found it to be negative. Various explanations

of this puzzling empirical phenomenon have been proposed, including a

link through real activity, so that real activity is negatively related to in-

flation but positively related to stock returns and therefore stock returns

and inflation vary positively. Clearly, inflation and stock returns ought

to be simultaneously related given that the rate of inflation will affect

the discount rate applied to cashflows and therefore the value of equi-

ties, but the performance of the stock market may also affect consumer

demand and therefore inflation through its impact on householder wealth

(perceived or actual).1

1 Crucially, good econometric models are based on solid financial theory. This model is

clearly not, but represents a simple way to illustrate the estimation and interpretation

of simultaneous equations models using EViews with freely available data!
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This simple example uses the same macroeconomic data as used previ-

ously to estimate this relationship simultaneously. Suppose (without jus-

tification) that we wish to estimate the following model, which does not

allow for dynamic effects or partial adjustments and does not distinguish

between expected and unexpected inflation

inflationt = α0 + α1 returnst + α2 dcreditt + α3 dprodt + α4 dmoney + u1t

(6.59)

returnst = β0 + β1 dprodt + β2 dspreadt + β3 inflationt + β4 rtermt + u2t

(6.60)

where ‘returns’ are stock returns and all of the other variables are defined

as in the previous example in chapter 4.

It is evident that there is feedback between the two equations since

the inflation variable appears in the stock returns equation and vice versa.

Are the equations identified? Since there are two equations, each will be

identified if one variable is missing from that equation. Equation (6.59),

the inflation equation, omits two variables. It does not contain the default

spread or the term spread, and so is over-identified. Equation (6.60), the

stock returns equation, omits two variables as well -- the consumer credit

and money supply variables -- and so is over-identified too. Two-stage least

squares (2SLS) is therefore the appropriate technique to use.

In EViews, to do this we need to specify a list of instruments, which

would be all of the variables from the reduced form equation. In this

case, the reduced form equations would be

inflation = f (constant, dprod, dspread, rterm, dcredit, qrev, dmoney)

(6.61)

returns = g(constant, dprod, dspread, rterm, dcredit, qrev, dmoney)

(6.62)

We can perform both stages of 2SLS in one go, but by default, EViews

estimates each of the two equations in the system separately. To do

this, click Quick, Estimate Equation and then select TSLS – Two Stage

Least Squares (TSNLS and ARMA) from the list of estimation methods.

Then fill in the dialog box as in screenshot 6.1 to estimate the inflation

equation.

Thus the format of writing out the variables in the first window is

as usual, and the full structural equation for inflation as a dependent

variable should be specified here. In the instrument list, include every

variable from the reduced form equation, including the constant, and

click OK.
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The results would then appear as in the following table.

Dependent Variable: INFLATION
Method: Two-Stage Least Squares
Date: 09/02/07 Time: 20:55
Sample (adjusted): 1986M04 2007M04
Included observations: 253 after adjustments
Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 0.066248 0.337932 0.196038 0.8447
DPROD 0.068352 0.090839 0.752453 0.4525
DCREDIT 4.77E-07 1.38E-05 0.034545 0.9725
DMONEY 0.027426 0.05882 0.466266 0.6414
RSANDP 0.238047 0.363113 0.655573 0.5127

R-squared −15.398762 Mean dependent var 0.253632
Adjusted R-squared −15.663258 S.D. dependent var 0.269221
S.E. of regression 1.098980 Sum squared resid 299.5236
F-statistic 0.179469 Durbin-Watson stat 1.923274
Prob(F-statistic) 0.948875 Second-Stage SSR 17.39799

Similarly, the dialog box for the rsandp equation would be specified as

in screenshot 6.2. The output for the returns equation is shown in the

following table.

Dependent Variable: RSANDP
Method: Two-Stage Least Squares
Date: 09/02/07 Time: 20:30
Sample (adjusted): 1986M04 2007M04
Included observations: 253 after adjustments
Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 0.682709 3.531687 0.193310 0.8469
DPROD −0.242299 0.251263 −0.964322 0.3358
DSPREAD −2.517793 10.57406 −0.238110 0.8120
RTERM 0.138109 1.263541 0.109303 0.9131
INFLATION 0.322398 14.10926 0.02285 0.9818

R-squared 0.006553 Mean dependent var 0.721483
Adjusted R-squared −0.009471 S.D. dependent var 4.355220
S.E. of regression 4.375794 Sum squared resid 4748.599
F-statistic 0.688494 Durbin-Watson stat 2.017386
Prob(F-statistic) 0.600527 Second-Stage SSR 4727.189
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Screenshot 6.1

Estimating the

inflation equation

The results overall are not very enlightening. None of the parameters

is even close to statistical significance in either equation, although inter-

estingly, the fitted relationship between the stock returns and inflation

series is positive (albeit not significantly so). The R̄2 values from both

equations are also negative, so should be interpreted with caution. As the

EViews User’s Guide warns, this can sometimes happen even when there is

an intercept in the regression.

It may also be of relevance to conduct a Hausman test for the endo-

geneity of the inflation and stock return variables. To do this, estimate

the reduced form equations and save the residuals. Then create series of

fitted values by constructing new variables which are equal to the actual

values minus the residuals. Call the fitted value series inflation fit and

rsandp fit. Then estimate the structural equations (separately), adding the

fitted values from the relevant reduced form equations. The two sets of
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Screenshot 6.2

Estimating the

rsandp equation

variables (in EViews format, with the dependent variables first followed

by the lists of independent variables) are as follows.

For the stock returns equation:

rsandp c dprod dspread rterm inflation inflation fit

and for the inflation equation:

inflation c dprod dcredit dmoney rsandp rsandp fit

The conclusion is that the inflation fitted value term is not significant in

the stock return equation and so inflation can be considered exogenous

for stock returns. Thus it would be valid to simply estimate this equation

(minus the fitted value term) on its own using OLS. But the fitted stock

return term is significant in the inflation equation, suggesting that stock

returns are endogenous.
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6.11 Vector autoregressive models

Vector autoregressive models (VARs) were popularised in econometrics by

Sims (1980) as a natural generalisation of univariate autoregressive models

discussed in chapter 5. A VAR is a systems regression model (i.e. there is

more than one dependent variable) that can be considered a kind of hybrid

between the univariate time series models considered in chapter 5 and the

simultaneous equations models developed previously in this chapter. VARs

have often been advocated as an alternative to large-scale simultaneous

equations structural models.

The simplest case that can be entertained is a bivariate VAR, where there

are only two variables, y1t and y2t , each of whose current values depend

on different combinations of the previous k values of both variables, and

error terms

y1t = β10 + β11 y1t−1 + · · · + β1k y1t−k + α11 y2t−1 + · · · + α1k y2t−k + u1t

(6.63)

y2t = β20 + β21 y2t−1 + · · · + β2k y2t−k + α21 y1t−1 + · · · + α2k y1t−k + u2t

(6.64)

where ui t is a white noise disturbance term with E(ui t ) = 0, (i = 1, 2),

E(u1t u2t ) = 0.

As should already be evident, an important feature of the VAR model

is its flexibility and the ease of generalisation. For example, the model

could be extended to encompass moving average errors, which would be

a multivariate version of an ARMA model, known as a VARMA. Instead of

having only two variables, y1t and y2t , the system could also be expanded

to include g variables, y1t , y2t , y3t , . . . , ygt , each of which has an equation.

Another useful facet of VAR models is the compactness with which the

notation can be expressed. For example, consider the case from above

where k = 1, so that each variable depends only upon the immediately

previous values of y1t and y2t , plus an error term. This could be written as

y1t = β10 + β11 y1t−1 + α11 y2t−1 + u1t (6.65)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + u2t (6.66)

or
(

y1t

y2t

)

=

(

β10

β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

+

(

u1t

u2t

)

(6.67)

or even more compactly as

yt = β0 + β1 yt−1 + ut

g × 1 g × 1 g × gg × 1 g × 1
(6.68)
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In (6.68), there are g = 2 variables in the system. Extending the model to

the case where there are k lags of each variable in each equation is also

easily accomplished using this notation

yt = β0 + β1 yt−1 + β2 yt−2 + · · · + βk yt−k + ut

g × 1 g × 1 g × gg × 1 g × g g × 1 g × g g × 1 g × 1
(6.69)

The model could be further extended to the case where the model includes

first difference terms and cointegrating relationships (a vector error cor-

rection model (VECM) -- see chapter 7).

6.11.1 Advantages of VAR modelling

VAR models have several advantages compared with univariate time series

models or simultaneous equations structural models:

● The researcher does not need to specify which variables are endoge-

nous or exogenous -- all are endogenous. This is a very important point,

since a requirement for simultaneous equations structural models to

be estimable is that all equations in the system are identified. Essen-

tially, this requirement boils down to a condition that some variables

are treated as exogenous and that the equations contain different RHS

variables. Ideally, this restriction should arise naturally from financial

or economic theory. However, in practice theory will be at best vague in

its suggestions of which variables should be treated as exogenous. This

leaves the researcher with a great deal of discretion concerning how to

classify the variables. Since Hausman-type tests are often not employed

in practice when they should be, the specification of certain variables as

exogenous, required to form identifying restrictions, is likely in many

cases to be invalid. Sims termed these identifying restrictions ‘incred-

ible’. VAR estimation, on the other hand, requires no such restrictions

to be imposed.

● VARs allow the value of a variable to depend on more than just its

own lags or combinations of white noise terms, so VARs are more flexi-

ble than univariate AR models; the latter can be viewed as a restricted

case of VAR models. VAR models can therefore offer a very rich struc-

ture, implying that they may be able to capture more features of the

data.

● Provided that there are no contemporaneous terms on the RHS of the

equations, it is possible to simply use OLS separately on each equation. This

arises from the fact that all variables on the RHS are pre-determined --

that is, at time t , they are known. This implies that there is no possibility
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for feedback from any of the LHS variables to any of the RHS variables.

Pre-determined variables include all exogenous variables and lagged val-

ues of the endogenous variables.

● The forecasts generated by VARs are often better than ‘traditional struc-

tural’ models. It has been argued in a number of articles (see, for exam-

ple, Sims, 1980) that large-scale structural models performed badly in

terms of their out-of-sample forecast accuracy. This could perhaps arise

as a result of the ad hoc nature of the restrictions placed on the struc-

tural models to ensure identification discussed above. McNees (1986)

shows that forecasts for some variables (e.g. the US unemployment rate

and real GNP, etc.) are produced more accurately using VARs than from

several different structural specifications.

6.11.2 Problems with VARs

VAR models of course also have drawbacks and limitations relative to other

model classes:

● VARs are a-theoretical (as are ARMA models), since they use little theoret-

ical information about the relationships between the variables to guide

the specification of the model. On the other hand, valid exclusion re-

strictions that ensure identification of equations from a simultaneous

structural system will inform on the structure of the model. An up-

shot of this is that VARs are less amenable to theoretical analysis and

therefore to policy prescriptions. There also exists an increased possibil-

ity under the VAR approach that a hapless researcher could obtain an

essentially spurious relationship by mining the data. It is also often not

clear how the VAR coefficient estimates should be interpreted.

● How should the appropriate lag lengths for the VAR be determined? There

are several approaches available for dealing with this issue, which will

be discussed below.

● So many parameters! If there are g equations, one for each of g variables

and with k lags of each of the variables in each equation, (g + kg2)

parameters will have to be estimated. For example, if g = 3 and k = 3

there will be 30 parameters to estimate. For relatively small sample sizes,

degrees of freedom will rapidly be used up, implying large standard

errors and therefore wide confidence intervals for model coefficients.

● Should all of the components of the VAR be stationary? Obviously, if one

wishes to use hypothesis tests, either singly or jointly, to examine the

statistical significance of the coefficients, then it is essential that all

of the components in the VAR are stationary. However, many propo-

nents of the VAR approach recommend that differencing to induce
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stationarity should not be done. They would argue that the purpose

of VAR estimation is purely to examine the relationships between the

variables, and that differencing will throw information on any long-run

relationships between the series away. It is also possible to combine lev-

els and first differenced terms in a VECM -- see chapter 7.

6.11.3 Choosing the optimal lag length for a VAR

Often, financial theory will have little to say on what is an appropriate

lag length for a VAR and how long changes in the variables should take

to work through the system. In such instances, there are broadly two

methods that could be used to arrive at the optimal lag length: cross-

equation restrictions and information criteria.

6.11.4 Cross-equation restrictions for VAR lag length selection

A first (but incorrect) response to the question of how to determine the

appropriate lag length would be to use the block F-tests highlighted in

section 6.13 below. These, however, are not appropriate in this case as the

F-test would be used separately for the set of lags in each equation, and

what is required here is a procedure to test the coefficients on a set of

lags on all variables for all equations in the VAR at the same time.

It is worth noting here that in the spirit of VAR estimation (as Sims,

for example, thought that model specification should be conducted), the

models should be as unrestricted as possible. A VAR with different lag

lengths for each equation could be viewed as a restricted VAR. For example,

consider a VAR with 3 lags of both variables in one equation and 4 lags of

each variable in the other equation. This could be viewed as a restricted

model where the coefficient on the fourth lags of each variable in the

first equation have been set to zero.

An alternative approach would be to specify the same number of lags in

each equation and to determine the model order as follows. Suppose that a

VAR estimated using quarterly data has 8 lags of the two variables in each

equation, and it is desired to examine a restriction that the coefficients

on lags 5--8 are jointly zero. This can be done using a likelihood ratio test

(see chapter 8 for more general details concerning such tests). Denote the

variance--covariance matrix of residuals (given by ûû′), as 
̂. The likelihood

ratio test for this joint hypothesis is given by

L R = T [log|
̂r | − log|
̂u|] (6.70)

where |
̂r | is the determinant of the variance--covariance matrix of the

residuals for the restricted model (with 4 lags), |
̂u| is the determinant
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of the variance--covariance matrix of residuals for the unrestricted VAR

(with 8 lags) and T is the sample size. The test statistic is asymptotically

distributed as a χ2 variate with degrees of freedom equal to the total

number of restrictions. In the VAR case above, 4 lags of two variables are

being restricted in each of the 2 equations = a total of 4 × 2 × 2 = 16

restrictions. In the general case of a VAR with g equations, to impose

the restriction that the last q lags have zero coefficients, there would be

g2q restrictions altogether. Intuitively, the test is a multivariate equivalent

to examining the extent to which the RSS rises when a restriction is im-

posed. If 
̂r and 
̂u are ‘close together’, the restriction is supported by the

data.

6.11.5 Information criteria for VAR lag length selection

The likelihood ratio (LR) test explained above is intuitive and fairly easy to

estimate, but has its limitations. Principally, one of the two VARs must be

a special case of the other and, more seriously, only pairwise comparisons

can be made. In the above example, if the most appropriate lag length had

been 7 or even 10, there is no way that this information could be gleaned

from the LR test conducted. One could achieve this only by starting with

a VAR(10), and successively testing one set of lags at a time.

A further disadvantage of the LR test approach is that the χ2 test will

strictly be valid asymptotically only under the assumption that the errors

from each equation are normally distributed. This assumption is unlikely

to be upheld for financial data. An alternative approach to selecting the

appropriate VAR lag length would be to use an information criterion, as

defined in chapter 5 in the context of ARMA model selection. Information

criteria require no such normality assumptions concerning the distribu-

tions of the errors. Instead, the criteria trade off a fall in the RSS of each

equation as more lags are added, with an increase in the value of the

penalty term. The univariate criteria could be applied separately to each

equation but, again, it is usually deemed preferable to require the num-

ber of lags to be the same for each equation. This requires the use of

multivariate versions of the information criteria, which can be defined

as

MAIC = log
∣

∣
̂
∣

∣ + 2k ′/T (6.71)

MSBIC = log
∣

∣
̂
∣

∣ +
k ′

T
log(T ) (6.72)

MHQIC = log
∣

∣
̂
∣

∣ +
2k ′

T
log(log(T )) (6.73)
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where again 
̂ is the variance--covariance matrix of residuals, T is the

number of observations and k ′ is the total number of regressors in all

equations, which will be equal to p2k + p for p equations in the VAR sys-

tem, each with k lags of the p variables, plus a constant term in each

equation. As previously, the values of the information criteria are con-

structed for 0, 1, . . . , k̄ lags (up to some pre-specified maximum k̄), and

the chosen number of lags is that number minimising the value of the

given information criterion.

6.12 Does the VAR include contemporaneous terms?

So far, it has been assumed that the VAR specified is of the form

y1t = β10 + β11 y1t−1 + α11 y2t−1 + u1t (6.74)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + u2t (6.75)

so that there are no contemporaneous terms on the RHS of (6.74) or (6.75) --

i.e. there is no term in y2t on the RHS of the equation for y1t and no term

in y1t on the RHS of the equation for y2t . But what if the equations had a

contemporaneous feedback term, as in the following case?

y1t = β10 + β11 y1t−1 + α11 y2t−1 + α12 y2t + u1t (6.76)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + α22 y1t + u2t (6.77)

Equations (6.76) and (6.77) could also be written by stacking up the terms

into matrices and vectors:
(

y1t

y2t

)

=

(

β10

β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

+

(

α12 0

0 α22

)(

y2t

y1t

)

+

(

u1t

u2t

)

(6.78)

This would be known as a VAR in primitive form, similar to the structural

form for a simultaneous equations model. Some researchers have argued

that the a-theoretical nature of reduced form VARs leaves them unstruc-

tured and their results difficult to interpret theoretically. They argue that

the forms of VAR given previously are merely reduced forms of a more

general structural VAR (such as (6.78)), with the latter being of more in-

terest.

The contemporaneous terms from (6.78) can be taken over to the LHS

and written as
(

1 −α12

−α22 1

)(

y1t

y2t

)

=

(

β10

β20

)

+

(

β11 α11

α21 β21

)(

y1t−1

y2t−1

)

+

(

u1t

u2t

)

(6.79)
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or

Ayt = β0 + β1 yt−1 + ut (6.80)

If both sides of (6.80) are pre-multiplied by A−1

yt = A−1β0 + A−1β1 yt−1 + A−1ut (6.81)

or

yt = A0 + A1 yt−1 + et (6.82)

This is known as a standard form VAR, which is akin to the reduced

form from a set of simultaneous equations. This VAR contains only pre-

determined values on the RHS (i.e. variables whose values are known at

time t), and so there is no contemporaneous feedback term. This VAR can

therefore be estimated equation by equation using OLS.

Equation (6.78), the structural or primitive form VAR, is not identified,

since identical pre-determined (lagged) variables appear on the RHS of

both equations. In order to circumvent this problem, a restriction that

one of the coefficients on the contemporaneous terms is zero must be

imposed. In (6.78), either α12 or α22 must be set to zero to obtain a trian-

gular set of VAR equations that can be validly estimated. The choice of

which of these two restrictions to impose is ideally made on theoretical

grounds. For example, if financial theory suggests that the current value

of y1t should affect the current value of y2t but not the other way around,

set α12 = 0, and so on. Another possibility would be to run separate estima-

tions, first imposing α12 = 0 and then α22 = 0, to determine whether the

general features of the results are much changed. It is also very common

to estimate only a reduced form VAR, which is of course perfectly valid

provided that such a formulation is not at odds with the relationships

between variables that financial theory says should hold.

One fundamental weakness of the VAR approach to modelling is that its

a-theoretical nature and the large number of parameters involved make

the estimated models difficult to interpret. In particular, some lagged

variables may have coefficients which change sign across the lags, and

this, together with the interconnectivity of the equations, could render

it difficult to see what effect a given change in a variable would have

upon the future values of the variables in the system. In order to par-

tially alleviate this problem, three sets of statistics are usually constructed

for an estimated VAR model: block significance tests, impulse responses

and variance decompositions. How important an intuitively interpretable

model is will of course depend on the purpose of constructing the model.

Interpretability may not be an issue at all if the purpose of producing the

VAR is to make forecasts.
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Table 6.3 Granger causality tests and implied restrictions on VAR models

Hypothesis Implied restriction

1 Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0

2 Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0

3 Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0

4 Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0

6.13 Block significance and causality tests

It is likely that, when a VAR includes many lags of variables, it will be

difficult to see which sets of variables have significant effects on each

dependent variable and which do not. In order to address this issue, tests

are usually conducted that restrict all of the lags of a particular variable

to zero. For illustration, consider the following bivariate VAR(3)

(

y1t

y2t

)

=

(

α10

α20

)

+

(

β11 β12

β21 β22

)(

y1t−1

y2t−1

)

+

(

γ11 γ12

γ21 γ22

)(

y1t−2

y2t−2

)

+

(

δ11 δ12

δ21 δ22

)(

y1t−3

y2t−3

)

+

(

u1t

u2t

)

(6.83)

This VAR could be written out to express the individual equations as

y1t = α10 + β11 y1t−1 + β12 y2t−1 + γ11 y1t−2 + γ12 y2t−2

+ δ11 y1t−3 + δ12 y2t−3 + u1t
(6.84)

y2t = α20 + β21 y1t−1 + β22 y2t−1 + γ21 y1t−2 + γ22 y2t−2

+ δ21 y1t−3 + δ22 y2t−3 + u2t

One might be interested in testing the hypotheses and their implied re-

strictions on the parameter matrices given in table 6.3.

Assuming that all of the variables in the VAR are stationary, the joint

hypotheses can easily be tested within the F-test framework, since each

individual set of restrictions involves parameters drawn from only one

equation. The equations would be estimated separately using OLS to obtain

the unrestricted RSS, then the restrictions imposed and the models re-

estimated to obtain the restricted RSS. The F-statistic would then take the

usual form described in chapter 3. Thus, evaluation of the significance of

variables in the context of a VAR almost invariably occurs on the basis of

joint tests on all of the lags of a particular variable in an equation, rather

than by examination of individual coefficient estimates.
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In fact, the tests described above could also be referred to as causality

tests. Tests of this form were described by Granger (1969) and a slight vari-

ant due to Sims (1972). Causality tests seek to answer simple questions of

the type, ‘Do changes in y1 cause changes in y2?’ The argument follows

that if y1 causes y2, lags of y1 should be significant in the equation for y2.

If this is the case and not vice versa, it would be said that y1 ‘Granger-

causes’ y2 or that there exists unidirectional causality from y1 to y2. On

the other hand, if y2 causes y1, lags of y2 should be significant in the equa-

tion for y1. If both sets of lags were significant, it would be said that there

was ‘bi-directional causality’ or ‘bi-directional feedback’. If y1 is found to

Granger-cause y2, but not vice versa, it would be said that variable y1 is

strongly exogenous (in the equation for y2). If neither set of lags are sta-

tistically significant in the equation for the other variable, it would be

said that y1 and y2 are independent. Finally, the word ‘causality’ is some-

what of a misnomer, for Granger-causality really means only a correlation

between the current value of one variable and the past values of others;

it does not mean that movements of one variable cause movements of

another.

6.14 VARs with exogenous variables

Consider the following specification for a VAR(1) where X t is a vector of

exogenous variables and B is a matrix of coefficients

yt = A0 + A1 yt−1 + B X t + et (6.85)

The components of the vector X t are known as exogenous variables since

their values are determined outside of the VAR system -- in other words,

there are no equations in the VAR with any of the components of X t as

dependent variables. Such a model is sometimes termed a VARX, although

it could be viewed as simply a restricted VAR where there are equations

for each of the exogenous variables, but with the coefficients on the RHS

in those equations restricted to zero. Such a restriction may be considered

desirable if theoretical considerations suggest it, although it is clearly not

in the true spirit of VAR modelling, which is not to impose any restrictions

on the model but rather to ‘let the data decide’.

6.15 Impulse responses and variance decompositions

Block F-tests and an examination of causality in a VAR will suggest which

of the variables in the model have statistically significant impacts on the
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Box 6.3 Forecasting with VARs

One of the main advantages of the VAR approach to modelling and forecasting is that

since only lagged variables are used on the right hand side, forecasts of the future

values of the dependent variables can be calculated using only information from within

the system. We could term these unconditional forecasts since they are not

constructed conditional on a particular set of assumed values. However, conversely it

may be useful to produce forecasts of the future values of some variables conditional

upon known values of other variables in the system. For example, it may be the case

that the values of some variables become known before the values of the others. If the

known values of the former are employed, we would anticipate that the forecasts

should be more accurate than if estimated values were used unnecessarily, thus

throwing known information away. Alternatively, conditional forecasts can be employed

for counterfactual analysis based on examining the impact of certain scenarios. For

example, in a trivariate VAR system incorporating monthly stock returns, inflation and

GDP, we could answer the question: ‘What is the likely impact on the stock market over

the next 1–6 months of a 2-percentage point increase in inflation and a 1% rise in

GDP?’

future values of each of the variables in the system. But F-test results will

not, by construction, be able to explain the sign of the relationship or how

long these effects require to take place. That is, F-test results will not reveal

whether changes in the value of a given variable have a positive or negative

effect on other variables in the system, or how long it would take for the

effect of that variable to work through the system. Such information will,

however, be given by an examination of the VAR’s impulse responses and

variance decompositions.

Impulse responses trace out the responsiveness of the dependent variables

in the VAR to shocks to each of the variables. So, for each variable from

each equation separately, a unit shock is applied to the error, and the

effects upon the VAR system over time are noted. Thus, if there are g

variables in a system, a total of g2 impulse responses could be generated.

The way that this is achieved in practice is by expressing the VAR model

as a VMA -- that is, the vector autoregressive model is written as a vector

moving average (in the same way as was done for univariate autoregressive

models in chapter 5). Provided that the system is stable, the shock should

gradually die away.

To illustrate how impulse responses operate, consider the following

bivariate VAR(1)

yt = A1 yt−1 + ut (6.86)

where A1 =

[

0.5 0.3

0.0 0.2

]
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The VAR can also be written out using the elements of the matrices and

vectors as
[

y1t

y2t

]

=

[

0.5 0.3

0.0 0.2

][

y1t−1

y2t−1

]

+

[

u1t

u2t

]

(6.87)

Consider the effect at time t = 0, 1, . . . , of a unit shock to y1t at time t = 0

y0 =

[

u10

u20

]

=

[

1

0

]

(6.88)

y1 = A1 y0 =

[

0.5 0.3

0.0 0.2

][

1

0

]

=

[

0.5

0

]

(6.89)

y2 = A1 y1 =

[

0.5 0.3

0.0 0.2

][

0.5

0

]

=

[

0.25

0

]

(6.90)

and so on. It would thus be possible to plot the impulse response functions

of y1t and y2t to a unit shock in y1t . Notice that the effect on y2t is always

zero, since the variable y1t−1 has a zero coefficient attached to it in the

equation for y2t .

Now consider the effect of a unit shock to y2t at time t = 0

y0 =

[

u10

u20

]

=

[

0

1

]

(6.91)

y1 = A1 y0 =

[

0.5 0.3

0.0 0.2

][

0

1

]

=

[

0.3

0.2

]

(6.92)

y2 = A1 y1 =

[

0.5 0.3

0.0 0.2

][

0.3

0.2

]

=

[

0.21

0.04

]

(6.93)

and so on. Although it is probably fairly easy to see what the effects of

shocks to the variables will be in such a simple VAR, the same principles

can be applied in the context of VARs containing more equations or more

lags, where it is much more difficult to see by eye what are the interactions

between the equations.

Variance decompositions offer a slightly different method for examining

VAR system dynamics. They give the proportion of the movements in the

dependent variables that are due to their ‘own’ shocks, versus shocks to

the other variables. A shock to the ith variable will directly affect that

variable of course, but it will also be transmitted to all of the other vari-

ables in the system through the dynamic structure of the VAR. Variance

decompositions determine how much of the s-step-ahead forecast error

variance of a given variable is explained by innovations to each explana-

tory variable for s = 1, 2, . . . In practice, it is usually observed that own
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series shocks explain most of the (forecast) error variance of the series in

a VAR. To some extent, impulse responses and variance decompositions

offer very similar information.

For calculating impulse responses and variance decompositions, the or-

dering of the variables is important. To see why this is the case, recall

that the impulse responses refer to a unit shock to the errors of one VAR

equation alone. This implies that the error terms of all other equations

in the VAR system are held constant. However, this is not realistic since

the error terms are likely to be correlated across equations to some extent.

Thus, assuming that they are completely independent would lead to a mis-

representation of the system dynamics. In practice, the errors will have

a common component that cannot be associated with a single variable

alone.

The usual approach to this difficulty is to generate orthogonalised impulse

responses. In the context of a bivariate VAR, the whole of the common

component of the errors is attributed somewhat arbitrarily to the first

variable in the VAR. In the general case where there are more than

two variables in the VAR, the calculations are more complex but the in-

terpretation is the same. Such a restriction in effect implies an ‘ordering’

of variables, so that the equation for y1t would be estimated first and then

that of y2t , a bit like a recursive or triangular system.

Assuming a particular ordering is necessary to compute the impulse

responses and variance decompositions, although the restriction underly-

ing the ordering used may not be supported by the data. Again, ideally,

financial theory should suggest an ordering (in other words, that move-

ments in some variables are likely to follow, rather than precede, others).

Failing this, the sensitivity of the results to changes in the ordering can

be observed by assuming one ordering, and then exactly reversing it and

re-computing the impulse responses and variance decompositions. It is

also worth noting that the more highly correlated are the residuals from

an estimated equation, the more the variable ordering will be important.

But when the residuals are almost uncorrelated, the ordering of the vari-

ables will make little difference (see Lütkepohl, 1991, chapter 2 for further

details).

Runkle (1987) argues that both impulse responses and variance decom-

positions are notoriously difficult to interpret accurately. He argues that

confidence bands around the impulse responses and variance decomposi-

tions should always be constructed. However, he further states that, even

then, the confidence intervals are typically so wide that sharp inferences

are impossible.
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6.16 VAR model example: the interaction between
property returns and the macroeconomy

6.16.1 Background, data and variables

Brooks and Tsolacos (1999) employ a VAR methodology for investigat-

ing the interaction between the UK property market and various macro-

economic variables. Monthly data, in logarithmic form, are used for the

period from December 1985 to January 1998. The selection of the variables

for inclusion in the VAR model is governed by the time series that are com-

monly included in studies of stock return predictability. It is assumed that

stock returns are related to macroeconomic and business conditions, and

hence time series which may be able to capture both current and future

directions in the broad economy and the business environment are used

in the investigation.

Broadly, there are two ways to measure the value of property-based

assets -- direct measures of property value and equity-based measures. Direct prop-

erty measures are based on periodic appraisals or valuations of the actual

properties in a portfolio by surveyors, while equity-based measures evalu-

ate the worth of properties indirectly by considering the values of stock

market traded property companies. Both sources of data have their draw-

backs. Appraisal-based value measures suffer from valuation biases and in-

accuracies. Surveyors are typically prone to ‘smooth’ valuations over time,

such that the measured returns are too low during property market booms

and too high during periods of property price falls. Additionally, not every

property in the portfolio that comprises the value measure is appraised

during every period, resulting in some stale valuations entering the aggre-

gate valuation, further increasing the degree of excess smoothness of the

recorded property price series. Indirect property vehicles -- property-related

companies traded on stock exchanges -- do not suffer from the above prob-

lems, but are excessively influenced by general stock market movements.

It has been argued, for example, that over three-quarters of the variation

over time in the value of stock exchange traded property companies can be

attributed to general stock market-wide price movements. Therefore, the

value of equity-based property series reflects much more the sentiment

in the general stock market than the sentiment in the property market

specifically.

Brooks and Tsolacos (1999) elect to use the equity-based FTSE Property

Total Return Index to construct property returns. In order to purge the real

estate return series of its general stock market influences, it is common

to regress property returns on a general stock market index (in this case
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the FTA All-Share Index is used), saving the residuals. These residuals are

expected to reflect only the variation in property returns, and thus become

the property market return measure used in subsequent analysis, and

are denoted PROPRES.

Hence, the variables included in the VAR are the property returns (with

general stock market effects removed), the rate of unemployment, nom-

inal interest rates, the spread between the long- and short-term interest

rates, unanticipated inflation and the dividend yield. The motivations for

including these particular variables in the VAR together with the property

series, are as follows:

● The rate of unemployment (denoted UNEM) is included to indicate general

economic conditions. In US research, authors tend to use aggregate

consumption, a variable that has been built into asset pricing models

and examined as a determinant of stock returns. Data for this variable

and for alternative variables such as GDP are not available on a monthly

basis in the UK. Monthly data are available for industrial production

series but other studies have not shown any evidence that industrial

production affects real estate returns. As a result, this series was not

considered as a potential causal variable.

● Short-term nominal interest rates (denoted SIR) are assumed to contain

information about future economic conditions and to capture the state

of investment opportunities. It was found in previous studies that short-

term interest rates have a very significant negative influence on property

stock returns.

● Interest rate spreads (denoted SPREAD), i.e. the yield curve, are usually

measured as the difference in the returns between long-term Treasury

Bonds (of maturity, say, 10 or 20 years), and the one-month or three-

month Treasury Bill rate. It has been argued that the yield curve has

extra predictive power, beyond that contained in the short-term inter-

est rate, and can help predict GDP up to four years ahead. It has also

been suggested that the term structure also affects real estate market

returns.

● Inflation rate influences are also considered important in the pricing

of stocks. For example, it has been argued that unanticipated inflation

could be a source of economic risk and as a result, a risk premium will

also be added if the stock of firms has exposure to unanticipated infla-

tion. The unanticipated inflation variable (denoted UNINFL) is defined as

the difference between the realised inflation rate, computed as the per-

centage change in the Retail Price Index (RPI), and an estimated series

of expected inflation. The latter series was produced by fitting an ARMA
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model to the actual series and making a one-period(month)-ahead fore-

cast, then rolling the sample forward one period, and re-estimating

the parameters and making another one-step-ahead forecast, and

so on.

● Dividend yields (denoted DIVY) have been widely used to model stock

market returns, and also real estate property returns, based on the

assumption that movements in the dividend yield series are related to

long-term business conditions and that they capture some predictable

components of returns.

All variables to be included in the VAR are required to be stationary in

order to carry out joint significance tests on the lags of the variables.

Hence, all variables are subjected to augmented Dickey--Fuller (ADF) tests

(see chapter 7). Evidence that the log of the RPI and the log of the un-

employment rate both contain a unit root is observed. Therefore, the first

differences of these variables are used in subsequent analysis. The remain-

ing four variables led to rejection of the null hypothesis of a unit root in

the log-levels, and hence these variables were not first differenced.

6.16.2 Methodology

A reduced form VAR is employed and therefore each equation can ef-

fectively be estimated using OLS. For a VAR to be unrestricted, it is re-

quired that the same number of lags of all of the variables is used in all

equations. Therefore, in order to determine the appropriate lag lengths,

the multivariate generalisation of Akaike’s information criterion (AIC)

is used.

Within the framework of the VAR system of equations, the significance

of all the lags of each of the individual variables is examined jointly with

an F -test. Since several lags of the variables are included in each of the

equations of the system, the coefficients on individual lags may not ap-

pear significant for all lags, and may have signs and degrees of significance

that vary with the lag length. However, F -tests will be able to establish

whether all of the lags of a particular variable are jointly significant. In or-

der to consider further the effect of the macroeconomy on the real estate

returns index, the impact multipliers (orthogonalised impulse responses)

are also calculated for the estimated VAR model. Two standard error bands

are calculated using the Monte Carlo integration approach employed by

McCue and Kling (1994), and based on Doan (1994). The forecast error vari-

ance is also decomposed to determine the proportion of the movements

in the real estate series that are a consequence of its own shocks rather

than shocks to other variables.



Multivariate models 305

Table 6.4 Marginal significance levels associated with joint F-tests

Lags of variable
Dependent

variable SIR DIVY SPREAD UNEM UNINFL PROPRES

SIR 0.0000 0.0091 0.0242 0.0327 0.2126 0.0000
DIVY 0.5025 0.0000 0.6212 0.4217 0.5654 0.4033
SPREAD 0.2779 0.1328 0.0000 0.4372 0.6563 0.0007
UNEM 0.3410 0.3026 0.1151 0.0000 0.0758 0.2765
UNINFL 0.3057 0.5146 0.3420 0.4793 0.0004 0.3885
PROPRES 0.5537 0.1614 0.5537 0.8922 0.7222 0.0000

The test is that all 14 lags have no explanatory power for that particular equation in

the VAR.

Source: Brooks and Tsolacos (1999).

6.16.3 Results

The number of lags that minimises the value of Akaike’s information

criterion is 14, consistent with the 15 lags used by McCue and Kling (1994).

There are thus (1 + 14 × 6) = 85 variables in each equation, implying 59

degrees of freedom. F-tests for the null hypothesis that all of the lags of a

given variable are jointly insignificant in a given equation are presented

in table 6.4.

In contrast to a number of US studies which have used similar vari-

ables, it is found to be difficult to explain the variation in the UK real

estate returns index using macroeconomic factors, as the last row of

table 6.4 shows. Of all the lagged variables in the real estate equation,

only the lags of the real estate returns themselves are highly significant,

and the dividend yield variable is significant only at the 20% level. No

other variables have any significant explanatory power for the real estate

returns. Therefore, based on the F-tests, an initial conclusion is that the

variation in property returns, net of stock market influences, cannot be

explained by any of the main macroeconomic or financial variables used

in existing research. One possible explanation for this might be that, in

the UK, these variables do not convey the information about the macro-

economy and business conditions assumed to determine the intertempo-

ral behaviour of property returns. It is possible that property returns may

reflect property market influences, such as rents, yields or capitalisation

rates, rather than macroeconomic or financial variables. However, again

the use of monthly data limits the set of both macroeconomic and prop-

erty market variables that can be used in the quantitative analysis of real

estate returns in the UK.
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Table 6.5 Variance decompositions for the property sector index residuals

Explained by innovations in

SIR DIVY SPREAD UNEM UNINFL PROPRES

Months ahead I II I II I II I II I II I II

1 0.0 0.8 0.0 38.2 0.0 9.1 0.0 0.7 0.0 0.2 100.0 51.0
2 0.2 0.8 0.2 35.1 0.2 12.3 0.4 1.4 1.6 2.9 97.5 47.5
3 3.8 2.5 0.4 29.4 0.2 17.8 1.0 1.5 2.3 3.0 92.3 45.8
4 3.7 2.1 5.3 22.3 1.4 18.5 1.6 1.1 4.8 4.4 83.3 51.5

12 2.8 3.1 15.5 8.7 15.3 19.5 3.3 5.1 17.0 13.5 46.1 50.0
24 8.2 6.3 6.8 3.9 38.0 36.2 5.5 14.7 18.1 16.9 23.4 22.0

Source: Brooks and Tsolacos (1999).

It appears, however, that lagged values of the real estate variable have

explanatory power for some other variables in the system. These results

are shown in the last column of table 6.4. The property sector appears

to help in explaining variations in the term structure and short-term

interest rates, and moreover since these variables are not significant in

the property index equation, it is possible to state further that the prop-

erty residual series Granger-causes the short-term interest rate and the

term spread. This is a bizarre result. The fact that property returns are

explained by own lagged values -- i.e. that is there is interdependency be-

tween neighbouring data points (observations) -- may reflect the way that

property market information is produced and reflected in the property

return indices.

Table 6.5 gives variance decompositions for the property returns index

equation of the VAR for 1, 2, 3, 4, 12 and 24 steps ahead for the two

variable orderings:

Order I: PROPRES, DIVY, UNINFL, UNEM, SPREAD, SIR

Order II: SIR, SPREAD, UNEM, UNINFL, DIVY, PROPRES.

Unfortunately, the ordering of the variables is important in the decom-

position. Thus two orderings are applied, which are the exact opposite of

one another, and the sensitivity of the result is considered. It is clear that

by the two-year forecasting horizon, the variable ordering has become al-

most irrelevant in most cases. An interesting feature of the results is that

shocks to the term spread and unexpected inflation together account for

over 50% of the variation in the real estate series. The short-term interest

rate and dividend yield shocks account for only 10--15% of the variance of



Multivariate models 307

0.04

0.02

0

–0.02

–0.04

–0.06

–0.08

–0.1

1

Steps ahead

Innovations in unexpected inflation

2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 259

Figure 6.1

Impulse responses

and standard error

bands for

innovations in

unexpected inflation

equation errors

0.06

0.04

0.02

0

–0.02

–0.04

–0.06

1

Steps ahead

Innovations in dividend yields

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 6.2

Impulse responses

and standard error

bands for

innovations in the

dividend yields

the property index. One possible explanation for the difference in results

between the F-tests and the variance decomposition is that the former

is a causality test and the latter is effectively an exogeneity test. Hence

the latter implies the stronger restriction that both current and lagged

shocks to the explanatory variables do not influence the current value of

the dependent variable of the property equation. Another way of stating

this is that the term structure and unexpected inflation have a contempo-

raneous rather than a lagged effect on the property index, which implies

insignificant F-test statistics but explanatory power in the variance decom-

position. Therefore, although the F-tests did not establish any significant

effects, the error variance decompositions show evidence of a contempora-

neous relationship between PROPRES and both SPREAD and UNINFL. The

lack of lagged effects could be taken to imply speedy adjustment of the

market to changes in these variables.

Figures 6.1 and 6.2 give the impulse responses for PROPRES associated

with separate unit shocks to unexpected inflation and the dividend yield,
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as examples (as stated above, a total of 36 impulse responses could be

calculated since there are 6 variables in the system).

Considering the signs of the responses, innovations to unexpected

inflation (figure 6.1) always have a negative impact on the real estate

index, since the impulse response is negative, and the effect of the shock

does not die down, even after 24 months. Increasing stock dividend yields

(figure 6.2) have a negative impact for the first three periods, but beyond

that, the shock appears to have worked its way out of the system.

6.16.4 Conclusions

The conclusion from the VAR methodology adopted in the Brooks and

Tsolacos paper is that overall, UK real estate returns are difficult to ex-

plain on the basis of the information contained in the set of the variables

used in existing studies based on non-UK data. The results are not strongly

suggestive of any significant influences of these variables on the variation

of the filtered property returns series. There is, however, some evidence

that the interest rate term structure and unexpected inflation have a con-

temporaneous effect on property returns, in agreement with the results

of a number of previous studies.

6.17 VAR estimation in EViews

By way of illustration, a VAR is estimated in order to examine whether

there are lead--lag relationships for the returns to three exchange rates

against the US dollar -- the euro, the British pound and the Japanese yen.

The data are daily and run from 7 July 2002 to 7 July 2007, giving a total of

1,827 observations. The data are contained in the Excel file ‘currencies.xls’.

First Create a new workfile, called ‘currencies.wf1’, and import the three

currency series. Construct a set of continuously compounded percentage

returns called ‘reur’, ‘rgbp’ and ‘rjpy’. VAR estimation in EViews can be ac-

complished by clicking on the Quick menu and then Estimate VAR. The

VAR inputs screen appears as in screenshot 6.3.

In the Endogenous variables box, type the three variable names, reur

rgbp rjpy. In the Exogenous box, leave the default ‘C’ and in the Lag

Interval box, enter 1 2 to estimate a VAR(2), just as an example. The output

appears in a neatly organised table as shown on the following page, with

one column for each equation in the first and second panels, and a single

column of statistics that describes the system as a whole in the third. So

values of the information criteria are given separately for each equation

in the second panel and jointly for the model as a whole in the third.
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Vector Autoregression Estimates
Date: 09/03/07 Time: 21:54
Sample (adjusted): 7/10/2002 7/07/2007
Included observations: 1824 after adjustments
Standard errors in ( ) & t-statistics in [ ]

REUR RGBP RJPY

REUR(−1) 0.031460 0.016776 0.040970

(0.03681) (0.03234) (0.03444)

[0.85471] [0.51875] [1.18944]

REUR(−2) 0.011377 0.045542 0.030551

(0.03661) (0.03217) (0.03426)

[0.31073] [1.41574] [0.89167]

RGBP(−1) −0.070259 0.040547 −0.060907

(0.04051) (0.03559) (0.03791)

[−1.73453] [1.13933] [−1.60683]

RGBP(-2) 0.026719 −0.015074 −0.019407

(0.04043) (0.03552) (0.03784)

[0.66083] [−0.42433] [−0.51293]

RJPY(-1) −0.020698 −0.029766 0.011809

(0.03000) (0.02636) (0.02807)

[−0.68994] [−1.12932] [0.42063]

RJPY(-2) −0.014817 −0.000392 0.035524

(0.03000) (0.02635) (0.02807)

[−0.49396] [−0.01489] [1.26557]

C −0.017229 −0.012878 0.002187

(0.01100) (0.00967) (0.01030)

[−1.56609] [−1.33229] [0.21239]

R-squared 0.003403 0.004040 0.003797

Adj. R-squared 0.000112 0.000751 0.000507

Sum sq. resids 399.0767 308.0701 349.4794

S.E. equation 0.468652 0.411763 0.438564

F-statistic 1.034126 1.228431 1.154191

Log likelihood −1202.238 −966.1886 −1081.208

Akaike AIC 1.325919 1.067093 1.193210

Schwarz SC 1.347060 1.088234 1.214351

Mean dependent −0.017389 −0.014450 0.002161

S.D. dependent 0.468679 0.411918 0.438676

Determinant resid covariance (dof adj.) 0.002214

Determinant resid covariance 0.002189

Log likelihood −2179.054

Akaike information criterion 2.412339

Schwarz criterion 2.475763
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Screenshot 6.3

VAR inputs screen

We will shortly discuss the interpretation of the output, but the exam-

ple so far has assumed that we know the appropriate lag length for the VAR.

However, in practice, the first step in the construction of any VAR model,

once the variables that will enter the VAR have been decided, will be to

determine the appropriate lag length. This can be achieved in a variety

of ways, but one of the easiest is to employ a multivariate information

criterion. In EViews, this can be done easily from the EViews VAR output

we have by clicking View/Lag Structure/Lag Length Criteria. . . . You will

be invited to specify the maximum number of lags to entertain including

in the model, and for this example, arbitrarily select 10. The output in

the following table would be observed.

EViews presents the values of various information criteria and other

methods for determining the lag order. In this case, the Schwartz and

Hannan--Quinn criteria both select a zero order as optimal, while Akaike’s

criterion chooses a VAR(1). Estimate a VAR(1) and examine the results.

Does the model look as if it fits the data well? Why or why not?
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VAR Lag Order Selection Criteria
Endogenous variables: REUR RGBP RJPY
Exogenous variables: C
Date: 09/03/07 Time: 21:58
Sample: 7/07/2002 7/07/2007
Included observations: 1816

Lag LogL LR FPE AIC SC HQ

0 −2192.395 NA 0.002252 2.417836 2.426929∗ 2.421191∗

1 −2175.917 32.88475 0.002234∗ 2.409600∗ 2.445973 2.423020
2 −2170.888 10.01901 0.002244 2.413973 2.477625 2.437459
3 −2167.760 6.221021 0.002258 2.420441 2.511372 2.453992
4 −2158.361 18.66447 0.002257 2.420001 2.538212 2.463617
5 −2151.563 13.47494 0.002263 2.422426 2.567917 2.476109
6 −2145.132 12.72714 0.002269 2.425256 2.598026 2.489004
7 −2141.412 7.349932 0.002282 2.431071 2.631120 2.504884
8 −2131.693 19.17197 0.002281 2.430278 2.657607 2.514157
9 −2121.823 19.43540∗ 0.002278 2.429320 2.683929 2.523264
10 −2119.745 4.084453 0.002296 2.436944 2.718832 2.540953

∗ indicates lag order selected by the criterion
LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Next, run a Granger causality test by clicking View/Lag Structure/

Granger Causality/Block Exogeneity Tests. The table of statistics will

appear immediately as on the following page.

The results, unsurprisingly, show very little evidence of lead--lag interac-

tions between the series. Since we have estimated a tri-variate VAR, three

panels are displayed, with one for each dependent variable in the sys-

tem. None of the results shows any causality that is significant at the 5%

level, although there is causality from the pound to the euro and from the

pound to the yen that is almost significant at the 10% level, but no causal-

ity in the opposite direction and no causality between the euro--dollar and

the yen--dollar in either direction. These results might be interpreted as

suggesting that information is incorporated slightly more quickly in the

pound--dollar rate than in the euro--dollar or yen--dollar rates.

It is worth also noting that the term ‘Granger causality’ is something of

a misnomer since a finding of ‘causality’ does not mean that movements
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VAR Granger Causality/Block Exogeneity Wald Tests
Date: 09/04/07 Time: 13:50
Sample: 7/07/2002 7/07/2007
Included observations: 1825

Dependent variable: REUR

Excluded Chi-sq df Prob.

RGBP 2.617817 1 0.1057
RJPY 0.473950 1 0.4912

All 3.529180 2 0.1713

Dependent variable: RGBP

Excluded Chi-sq df Prob.

REUR 0.188122 1 0.6645
RJPY 1.150696 1 0.2834

All 1.164752 2 0.5586

Dependent variable: RJPY

Excluded Chi-sq df Prob.

REUR 1.206092 1 0.2721
RGBP 2.424066 1 0.1195

All 2.435252 2 0.2959

in one variable physically cause movements in another. For example, in

the above analysis, if movements in the euro--dollar market were found

to Granger-cause movements in the pound--dollar market, this would not

have meant that the pound--dollar rate changed as a direct result of, or

because of, movements in the euro--dollar market. Rather, causality simply

implies a chronological ordering of movements in the series. It could validly be

stated that movements in the pound--dollar rate appear to lead those of

the euro--dollar rate, and so on.

The EViews manual suggests that block F-test restrictions can be per-

formed by estimating the VAR equations individually using OLS and then

by using the View then Lag Structure then Lag Exclusion Tests. EViews

tests for whether the parameters for a given lag of all the variables in a

particular equation can be restricted to zero.
To obtain the impulse responses for the estimated model, simply click

the Impulse on the button bar above the VAR object and a new dialog box

will appear as in screenshot 6.4.
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Screenshot 6.4

Constructing the

VAR impulse

responses

By default, EViews will offer to estimate and plot all of the responses

to separate shocks of all of the variables in the order that the variables

were listed in the estimation window, using ten steps and confidence

intervals generated using analytic formulae. If 20 steps ahead had been

selected, with ‘combined response graphs’, you would see the graphs in

the format in screenshot 6.5 (obviously they appear small on the page

and the colour has been lost, but the originals are much clearer). As one

would expect given the parameter estimates and the Granger causality

test results, again few linkages between the series are established here.

The responses to the shocks are very small, except for the response of a

variable to its own shock, and they die down to almost nothing after the

first lag.

Plots of the variance decompositions can also be generated by clicking

on View and then Variance Decomposition. A similar plot for the variance

decompositions would appear as in screenshot 6.6.

There is little again that can be seen from these variance decomposition

graphs that appear small on a printed page apart from the fact that the
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Screenshot 6.5

Combined impulse

response graphs

behaviour is observed to settle down to a steady state very quickly. Inter-

estingly, while the percentage of the errors that is attributable to own

shocks is 100% in the case of the euro rate, for the pound, the euro series

explains around 55% of the variation in returns, and for the yen, the euro

series explains around 30% of the variation.

We should remember that the ordering of the variables has an effect

on the impulse responses and variance decompositions, and when, as in

this case, theory does not suggest an obvious ordering of the series, some

sensitivity analysis should be undertaken. This can be achieved by clicking

on the ‘Impulse Definition’ tab when the window that creates the impulses

is open. A window entitled ‘Ordering for Cholesky’ should be apparent,

and it would be possible to reverse the order of variables or to select any

other order desired. For the variance decompositions, the ‘Ordering for

Cholesky’ box is observed in the window for creating the decompositions

without having to select another tab.
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Screenshot 6.6

Variance

decomposition

graphs

Key concepts
The key terms to be able to define and explain from this chapter are
● endogenous variable ● exogenous variable

● simultaneous equations bias ● identified

● order condition ● rank condition

● Hausman test ● reduced form

● structural form ● instrumental variables

● indirect least squares ● two-stage least squares

● vector autoregression ● Granger causality

● impulse response ● variance decomposition

Review questions

1. Consider the following simultaneous equations system

y1t = α0 + α1 y2t + α2 y3t + α3 X1t + α4 X2t + u1t (6.94)

y2t = β0 + β1 y3t + β2 X1t + β3 X3t + u2t (6.95)

y3t = γ0 + γ1 y1t + γ2 X2t + γ3 X3t + u3t (6.96)
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(a) Derive the reduced form equations corresponding to (6.94)–(6.96).

(b) What do you understand by the term ‘identification’? Describe a rule

for determining whether a system of equations is identified. Apply

this rule to (6.94–6.96). Does this rule guarantee that estimates of

the structural parameters can be obtained?

(c) Which would you consider the more serious misspecification: treating

exogenous variables as endogenous, or treating endogenous

variables as exogenous? Explain your answer.

(d) Describe a method of obtaining the structural form coefficients

corresponding to an overidentified system.

(e) Using EViews, estimate a VAR model for the interest rate series

used in the principal components example of chapter 3. Use a

method for selecting the lag length in the VAR optimally. Determine

whether certain maturities lead or lag others, by conducting Granger

causality tests and plotting impulse responses and variance

decompositions. Is there any evidence that new information is

reflected more quickly in some maturities than others?

2. Consider the following system of two equations

y1t = α0 + α1 y2t + α2 X1t + α3 X2t + u1t (6.97)

y2t = β0 + β1 y1t + β2 X1t + u2t (6.98)

(a) Explain, with reference to these equations, the undesirable

consequences that would arise if (6.97) and (6.98) were estimated

separately using OLS.

(b) What would be the effect upon your answer to (a) if the variable y1t

had not appeared in (6.98)?

(c) State the order condition for determining whether an equation which

is part of a system is identified. Use this condition to determine

whether (6.97) or (6.98) or both or neither are identified.

(d) Explain whether indirect least squares (ILS) or two-stage least

squares (2SLS) could be used to obtain the parameters of (6.97)

and (6.98). Describe how each of these two procedures (ILS and

2SLS) are used to calculate the parameters of an equation. Compare

and evaluate the usefulness of ILS, 2SLS and IV.

(e) Explain briefly the Hausman procedure for testing for exogeneity.

3. Explain, using an example if you consider it appropriate, what you

understand by the equivalent terms ‘recursive equations’ and ‘triangular

system’. Can a triangular system be validly estimated using OLS?

Explain your answer.
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4. Consider the following vector autoregressive model

yt = β0 +

k
∑

i=1

βi yt−i + ut (6.99)

where yt is a p × 1 vector of variables determined by k lags of all p

variables in the system, ut is a p× 1 vector of error terms, β0 is a p× 1

vector of constant term coefficients and βi are p × p matrices of

coefficients on the i th lag of y.

(a) If p = 2, and k = 3, write out all the equations of the VAR in full,

carefully defining any new notation you use that is not given in the

question.

(b) Why have VARs become popular for application in economics and

finance, relative to structural models derived from some underlying

theory?

(c) Discuss any weaknesses you perceive in the VAR approach to

econometric modelling.

(d) Two researchers, using the same set of data but working

independently, arrive at different lag lengths for the VAR equation

(6.99). Describe and evaluate two methods for determining which of

the lag lengths is more appropriate.

5. Define carefully the following terms

● Simultaneous equations system

● Exogenous variables

● Endogenous variables

● Structural form model

● Reduced form model


